Non-destructive quantification of cereal roots in soil using high-resolution X-ray tomography

Richard J. Flavel, Christopher N. Guppy, Matthew Tighe, Michelle Watt, Ann McNeill, Iain M. Young

Research output: Contribution to journalArticlepeer-review

117 Scopus citations

Abstract

One key constraint to further understanding plant root development is the inability to observe root growth in situ due to the opaque nature of soil. Of the present non-destructive techniques, computed tomography (CT) is best able to capture the complexities of the edaphic environment. This study compared the accuracy and impact of X-ray CT measurement of in situ root systems with standard technology (soil core washing and WinRhizo analysis) in the context of treatments that differed in the vertical placement of phosphorus fertilizers within the soil profile. Although root lengths quantified using WinRhizo were 8% higher than that observed in the same plants using CT, measurements of root length by the two methodologies were highly correlated. Comparison of scanned and unscanned plants revealed no effect of repeated scanning on plant growth and CT was not able to detect any changes in roots between phosphorus treatments that was observed using WinRhizo. Overall, the CT technique was found to be fast, safe, and able to detect roots at high spatial resolutions. The potential drawbacks of CT relate to the software to digitally segment roots from soil and air, which will improve significantly as automated segmentation algorithms are developed. The combination of very fast scans and automated segmentation will allow CT methodology to realize its potential as a high-throughput technique for the quantification of roots in soils. © 2012 The Author.
Original languageEnglish (US)
Pages (from-to)2503-2511
Number of pages9
JournalJournal of Experimental Botany
Volume63
Issue number7
DOIs
StatePublished - Apr 1 2012
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2023-02-15

ASJC Scopus subject areas

  • Plant Science
  • Physiology

Fingerprint

Dive into the research topics of 'Non-destructive quantification of cereal roots in soil using high-resolution X-ray tomography'. Together they form a unique fingerprint.

Cite this