Abstract
In this paper, we develop and analyze a general approach to preconditioning linear systems of equations arising from conforming finite element discretizations of H(curl, Ω)- and H(div, Ω)-elliptic variational problems. The preconditioners exclusively rely on solvers for discrete Poisson problems. We prove mesh-independent effectivity of the preconditioners by using the abstract theory of auxiliary space preconditioning. The main tools are discrete analogues of so-called regular decomposition results in the function spaces H(curl, Ω) and H(div, Ω). Our preconditioner for H(curl, Ω) is similar to an algorithm proposed in [R. Beck, Algebraic Multigrid by Component Splitting for Edge Elements on Simplicial Triangulations, Tech. rep. SC 99-40, ZIB, Berlin, Germany, 1999]. © 2007 Society for Industrial and Applied Mathematics.
Original language | English (US) |
---|---|
Pages (from-to) | 2483-2509 |
Number of pages | 27 |
Journal | SIAM Journal on Numerical Analysis |
Volume | 45 |
Issue number | 6 |
DOIs | |
State | Published - Dec 1 2007 |
Externally published | Yes |
Bibliographical note
Generated from Scopus record by KAUST IRTS on 2023-02-15ASJC Scopus subject areas
- Numerical Analysis