Abstract
A Newton solver for equations modeling drift-diffusion and electrokinetic phenomena is investigated. For drift-diffusion problems, modeled by the nonlinear Poisson–Nernst–Planck (PNP) equations, the linearization of the model equations is shown to be well-posed. Furthermore, a fast solver for the linearized PNP and electrokinetic equations is proposed and numerically demonstrated to be effective on some physically motivated benchmarks. This work builds on a formulation of the PNP and electrokinetic equations that is investigated in [M. S. Metti, J. Xu, and C. Liu, J. Comput. Phys., 306 (2016), pp. 1–18] and shown to have some favorable stability properties.
Original language | English (US) |
---|---|
Pages (from-to) | B982-B1006 |
Journal | SIAM Journal on Scientific Computing |
Volume | 40 |
Issue number | 3 |
DOIs | |
State | Published - Jan 1 2018 |
Externally published | Yes |
Bibliographical note
Generated from Scopus record by KAUST IRTS on 2023-02-15ASJC Scopus subject areas
- Computational Mathematics
- Applied Mathematics