Abstract
Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Original language | English (US) |
---|---|
Pages (from-to) | 3677-3680 |
Number of pages | 4 |
Journal | Advanced Materials |
Volume | 22 |
Issue number | 33 |
DOIs | |
State | Published - Aug 20 2010 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledged KAUST grant number(s): KUS-C1-018-02
Acknowledgements: Work on synthesis and mechanical characterization of nanoscale organic hybrid materials (NOHMs) was supported by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). Our research on electrochemical characterization of NOHMs was supported by the Department of Energy Basic Energy Sciences program (Grant DE-FG02-07ER46455)). JN acknowledges support from a National Science Foundation Sustainable Materials IGERT fellowship program at Cornell.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.