Abstract
This work identifies classes of cool flame intermediates from nheptane low-temperature oxidation (e.g., < 750 K) in a jet-stirred reactor (JSR) and a cooperative fuel research (CFR) engine. The sampled species from the JSR were analyzed using a synchrotron vacuum ultraviolet radiation photoionization time-of-flight molecular-beam mass spectrometer and an atmospheric pressure chemical ionization orbitrap mass spectrometer; the latter was also used to analyze the sampled species from the CFR engine. The products can be classified by species with molecular formulas of C7H14Ox (x=0-5), C7H12Ox (x=0-4), C7H10Ox (x=0-4), CnH2n (n=2-6), CnH2n-2 (n=4-6), CnH2n+2O (n=1-4, 6), CnH2nO (n=1-6), CnH2n-2O (n=2-6), CnH2n-4O (n=4-6), CnH2n+2O2 (n=0-4, 7), CnH2nO2 (n=1-6), CnH2n-2O2 (n=2-6), CnH2n-4O2 (n=4-7), and CnH2nO3 (n=3-6). The identified intermediate species include mainly alkene, dienes, aldehyde/keto compounds, olefinic aldehyde/keto compounds, diones, cyclic ethers, peroxides, acids, and alcohols/ethers. Reaction pathways forming intermediates with the same carbon number as n-heptane are proposed and discussed. These experimental results should be helpful in the development of kinetic models for n-heptane and longer-chain alkanes.
Original language | English (US) |
---|---|
State | Published - 2017 |
Event | 11th Asia-Pacific Conference on Combustion, ASPACC 2017 - Sydney, Australia Duration: Dec 10 2017 → Dec 14 2017 |
Conference
Conference | 11th Asia-Pacific Conference on Combustion, ASPACC 2017 |
---|---|
Country/Territory | Australia |
City | Sydney |
Period | 12/10/17 → 12/14/17 |
Bibliographical note
Publisher Copyright:© 2018 Combustion Institute. All Rights Reserved.
ASJC Scopus subject areas
- Condensed Matter Physics
- Energy Engineering and Power Technology
- Fuel Technology
- General Chemical Engineering