Abstract
The abundant and wide distribution of sodium makes sodium-ion batteries (SIBs) one of the most promising battery technologies to supplement the current lithium-ion batteries in large-scale energy storage. However, the available anode materials are still far from satisfactory to enable the high-performance operation of SIBs. Here, a V2S3@C@V2S3 heterostructure anode is developed by one-step in-situ conversion of V2CTx MXene in CS2 ambient. The resultant electrode has abundant heterointerfaces and controllable V2S3 crystallinity and size. In this unique design, the carbon interlayer in the anode behaves like a flexible conductive support and an anchoring network. The ultrathin V2S3 nanosheets and the V2S3–C heterointerfaces enhance the Na+ adsorption and migration abilities, thus simultaneously mitigating the low conductivity, structural degradation, and sluggish kinetics of V2S3. As a result, this V2S3@C@V2S3 anode achieves a highly reversible capacity (628 mAh/g at 0.1 A/g), excellent rate performance (477 mAh/g at 10A/g), and impressive cycling stability (2000 cycles at 20 A/g, record-high value). This performance is far better than the parent MXene phase. Considering the rich compositional diversity of MXene, the in-situ conversion strategy developed here can be extended to construct a wide range of high-performance electrode materials for advanced batteries.
Original language | English (US) |
---|---|
Article number | 101184 |
Journal | Materials Today Energy |
Volume | 30 |
DOIs | |
State | Published - Dec 2022 |
Bibliographical note
Funding Information:Research reported in this manuscript was funded by King Abdullah University of Science and Technology ( KAUST ) and the Natural Science Foundation of Jiangsu Province (BK20190688).
Publisher Copyright:
© 2022
Keywords
- In-situ conversion
- Sandwich
- Sodium-ion batteries
- VCT
- VS@C@VS
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- Materials Science (miscellaneous)
- Nuclear Energy and Engineering
- Fuel Technology
- Energy Engineering and Power Technology