Multimodal Variational Autoencoders for Sensor Fusion and Cross Generation

Matthieu Da Silva-Filarder, Andrea Ancora, Maurizio Filippone, Pietro Michiardi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

The cognitive system of humans, which allows them to create representations of their surroundings exploiting multiple senses, has inspired several applications to mimic this remarkable property. The key for learning rich representations of data collected by multiple, diverse sensors, is to design generative models that can ingest multimodal inputs, and merge them in a common space. This enables to: i) obtain a coherent generation of samples for all modalities, ii) enable cross-sensor generation, by using available modalities to generate missing ones and iii) exploit synergy across modalities, to increase reconstruction quality. In this work, we study multimodal variational autoencoders, and propose new methods for learning a joint representation that can both improve synergy and enable cross generation of missing sensor data. We evaluate these approaches on well-established datasets as well as on a new dataset that involves multimodal object detection with three modalities. Our results shed light on the role of joint posterior modeling and training objectives, indicating that even simple and efficient heuristics enable both synergy and cross generation properties to coexist.

Original languageEnglish (US)
Title of host publicationProceedings - 20th IEEE International Conference on Machine Learning and Applications, ICMLA 2021
EditorsM. Arif Wani, Ishwar K. Sethi, Weisong Shi, Guangzhi Qu, Daniela Stan Raicu, Ruoming Jin
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1069-1076
Number of pages8
ISBN (Electronic)9781665443371
DOIs
StatePublished - 2021
Event20th IEEE International Conference on Machine Learning and Applications, ICMLA 2021 - Virtual, Online, United States
Duration: Dec 13 2021Dec 16 2021

Publication series

NameProceedings - 20th IEEE International Conference on Machine Learning and Applications, ICMLA 2021

Conference

Conference20th IEEE International Conference on Machine Learning and Applications, ICMLA 2021
Country/TerritoryUnited States
CityVirtual, Online
Period12/13/2112/16/21

Bibliographical note

Publisher Copyright:
© 2021 IEEE.

Keywords

  • Autoencoder
  • Multimodal
  • Variational

ASJC Scopus subject areas

  • Safety, Risk, Reliability and Quality
  • Health Informatics
  • Artificial Intelligence
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Multimodal Variational Autoencoders for Sensor Fusion and Cross Generation'. Together they form a unique fingerprint.

Cite this