Multilayer Approach for Advanced Hybrid Lithium Battery

Jun Ming, Mengliu Li, Pushpendra Kumar, Lain-Jong Li

Research output: Contribution to journalArticlepeer-review

85 Scopus citations

Abstract

Conventional intercalated rechargeable batteries have shown their capacity limit, and the development of an alternative battery system with higher capacity is strongly needed for sustainable electrical vehicles and hand-held devices. Herein, we introduce a feasible and scalable multilayer approach to fabricate a promising hybrid lithium battery with superior capacity and multivoltage plateaus. A sulfur-rich electrode (90 wt % S) is covered by a dual layer of graphite/Li4Ti5O12, where the active materials S and Li4Ti5O12 can both take part in redox reactions and thus deliver a high capacity of 572 mAh gcathode -1 (vs the total mass of electrode) or 1866 mAh gs -1 (vs the mass of sulfur) at 0.1C (with the definition of 1C = 1675 mA gs -1). The battery shows unique voltage platforms at 2.35 and 2.1 V, contributed from S, and 1.55 V from Li4Ti5O12. A high rate capability of 566 mAh gcathode -1 at 0.25C and 376 mAh gcathode -1 at 1C with durable cycle ability over 100 cycles can be achieved. Operando Raman and electron microscope analysis confirm that the graphite/Li4Ti5O12 layer slows the dissolution/migration of polysulfides, thereby giving rise to a higher sulfur utilization and a slower capacity decay. This advanced hybrid battery with a multilayer concept for marrying different voltage plateaus from various electrode materials opens a way of providing tunable capacity and multiple voltage platforms for energy device applications. © 2016 American Chemical Society.
Original languageEnglish (US)
Pages (from-to)6037-6044
Number of pages8
JournalACS Nano
Volume10
Issue number6
DOIs
StatePublished - Jun 9 2016

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The research was supported by KAUST.

Fingerprint

Dive into the research topics of 'Multilayer Approach for Advanced Hybrid Lithium Battery'. Together they form a unique fingerprint.

Cite this