Abstract
The production of carbon-rich hydrocarbons via CO2 valorization is essential for the transition to renewable, non-fossil-fuel-based energy sources. However, most of the recent works in the state of the art are devoted to the formation of olefins and aromatics, ignoring the rest of the hydrocarbon commodities that, like propane, are essential to our economy. Hence, in this work, we have developed a highly active and selective PdZn/ZrO2+SAPO-34 multifunctional catalyst for the direct conversion of CO2 to propane. Our multifunctional system displays a total selectivity to propane higher than 50% (with 20% CO, 6% C1, 13% C2, 10% C4, and 1% C5) and a CO2 conversion close to 40% at 350 °C, 50 bar, and 1500 mL g–1 h–1. We attribute these results to the synergy between the intimately mixed PdZn/ZrO2 and SAPO-34 components that shifts the overall reaction equilibrium, boosting CO2 conversion and minimizing CO selectivity. Comparison to a PdZn/ZrO2+ZSM-5 system showed that propane selectivity is further boosted by the topology of SAPO-34. The presence of Pd in the catalyst drives paraffin production via hydrogenation, with more than 99.9% of the products being saturated hydrocarbons, offering very important advantages for the purification of the products.
Original language | English (US) |
---|---|
Journal | JACS Au |
DOIs | |
State | Published - Sep 2 2021 |
Bibliographical note
KAUST Repository Item: Exported on 2021-09-07Acknowledgements: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement 837733. The XAS measurements were supported by a public grant overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (reference: ANR-10-EQPX-45). The authors are grateful to C. La Fontaine and V. Briois, as well as to K. A. Lomachenko and A. Lazzarini for the help with the XAS experiment at ROCK, Soleil. Dr. Idoia Hita Del Olmo is acknowledged for her help with the TGA measurements. A.R., S.O.C., and J.G. acknowledge financial support from King Abdullah University of Science and Technology (KAUST). C.A.S. acknowledges the Norwegian Research Council for financial support through project no. 288331 (CO2LO). A.L.B. acknowledges the President’s Grant of Russian Federation MK-5853.2021.1.2.