Multi-scale Fully Convolutional Network for Face Detection in the Wild

Yancheng Bai, Bernard Ghanem

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

Face detection is a classical problem in computer vision. It is still a difficult task due to many nuisances that naturally occur in the wild. In this paper, we propose a multi-scale fully convolutional network for face detection. To reduce computation, the intermediate convolutional feature maps (conv) are shared by every scale model. We up-sample and down-sample the final conv map to approximate K levels of a feature pyramid, leading to a wide range of face scales that can be detected. At each feature pyramid level, a FCN is trained end-to-end to deal with faces in a small range of scale change. Because of the up-sampling, our method can detect very small faces (10×10 pixels). We test our MS-FCN detector on four public face detection datasets, including FDDB, WIDER FACE, AFW and PASCAL FACE. Extensive experiments show that it outperforms state-of-the-art methods. Also, MS-FCN runs at 23 FPS on a GPU for images of size 640×480 with no assumption on the minimum detectable face size.

Original languageEnglish (US)
Title of host publicationProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2017
PublisherIEEE Computer Society
Pages2078-2087
Number of pages10
ISBN (Electronic)9781538607336
DOIs
StatePublished - Aug 22 2017
Event30th IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2017 - Honolulu, United States
Duration: Jul 21 2017Jul 26 2017

Publication series

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Volume2017-July
ISSN (Print)2160-7508
ISSN (Electronic)2160-7516

Conference

Conference30th IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2017
Country/TerritoryUnited States
CityHonolulu
Period07/21/1707/26/17

Bibliographical note

Publisher Copyright:
© 2017 IEEE.

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Multi-scale Fully Convolutional Network for Face Detection in the Wild'. Together they form a unique fingerprint.

Cite this