TY - GEN
T1 - Multi-pruning of decision trees for knowledge representation and classification
AU - Azad, Mohammad
AU - Chikalov, Igor
AU - Hussain, Shahid
AU - Moshkov, Mikhail
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2016/6/9
Y1 - 2016/6/9
N2 - We consider two important questions related to decision trees: first how to construct a decision tree with reasonable number of nodes and reasonable number of misclassification, and second how to improve the prediction accuracy of decision trees when they are used as classifiers. We have created a dynamic programming based approach for bi-criteria optimization of decision trees relative to the number of nodes and the number of misclassification. This approach allows us to construct the set of all Pareto optimal points and to derive, for each such point, decision trees with parameters corresponding to that point. Experiments on datasets from UCI ML Repository show that, very often, we can find a suitable Pareto optimal point and derive a decision tree with small number of nodes at the expense of small increment in number of misclassification. Based on the created approach we have proposed a multi-pruning procedure which constructs decision trees that, as classifiers, often outperform decision trees constructed by CART. © 2015 IEEE.
AB - We consider two important questions related to decision trees: first how to construct a decision tree with reasonable number of nodes and reasonable number of misclassification, and second how to improve the prediction accuracy of decision trees when they are used as classifiers. We have created a dynamic programming based approach for bi-criteria optimization of decision trees relative to the number of nodes and the number of misclassification. This approach allows us to construct the set of all Pareto optimal points and to derive, for each such point, decision trees with parameters corresponding to that point. Experiments on datasets from UCI ML Repository show that, very often, we can find a suitable Pareto optimal point and derive a decision tree with small number of nodes at the expense of small increment in number of misclassification. Based on the created approach we have proposed a multi-pruning procedure which constructs decision trees that, as classifiers, often outperform decision trees constructed by CART. © 2015 IEEE.
UR - http://hdl.handle.net/10754/621280
UR - http://ieeexplore.ieee.org/document/7486574/
UR - http://www.scopus.com/inward/record.url?scp=84978907406&partnerID=8YFLogxK
U2 - 10.1109/ACPR.2015.7486574
DO - 10.1109/ACPR.2015.7486574
M3 - Conference contribution
SN - 9781479961009
SP - 604
EP - 608
BT - 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)
PB - Institute of Electrical and Electronics Engineers (IEEE)
ER -