Abstract
Background
Exposure to high and low ambient temperatures is associated with morbidity and mortality across the globe. Most of these studies assessing the effects of non-optimum temperatures on health and have been conducted in the developed world, whereas in India, the limited evidence on ambient temperature and health risks and has focused mostly on the effects of heat waves. Here we quantify short term association between all temperatures and mortality in urban Pune, India.
Methods
We applied a time series regression model to derive temperature-mortality associations based on daily mean temperature and all-cause mortality records of Pune city from year January 2004 to December 2012. We estimated high and low temperature-mortality relationships by using standard time series quasi-Poisson regression in conjunction with a distributed lag non-linear model (DLNM). We calculated temperature attributable mortality fractions for total heat and total cold.
Findings
The analysis provides estimates of the total mortality burden attributable to ambient temperature. Overall, 6∙5% [95%CI 1.76–11∙43] of deaths registered in the observational period were attributed to non-optimal temperatures, cold effect was greater 5.72% [95%CI 0∙70–10∙06] than heat 0∙84% [0∙35–1∙34]. The gender stratified analysis revealed that the highest burden among men both for heat and cold.
Conclusion
Non-optimal temperatures are associated with a substantial mortality burden. Our findings could benefit national, and local communities in developing preparedness and prevention strategies to reduce weather-related impacts immediately due to climate change.
Original language | English (US) |
---|---|
Pages (from-to) | 112304 |
Journal | Environmental Research |
DOIs | |
State | Published - Oct 29 2021 |
Bibliographical note
KAUST Repository Item: Exported on 2021-11-01Acknowledgements: We thankfully acknowledge Pune Municipal Corporation for providing the all-cause mortality data. Authors thank Indian Meteorological Department Pune, India for providing meteorological data. We also thank Carles Mila, former researcher from ISGlobal, Barcelona Spain for his help in data cleaning and management. HA gratefully acknowledge funding from the EU's Horizon 2020 research and innovation programme under grant agreement no 865564 (European Research Council Consolidator Grant EARLY-ADAPT). We thank Rahul Gawai for his help to prepare Pune city location map.
ASJC Scopus subject areas
- Biochemistry
- General Environmental Science