TY - JOUR
T1 - Monolithic perovskite/perovskite/silicon triple-junction solar cells with cation double displacement enabled 2.0 eV perovskites
AU - Xu, Fuzong
AU - Aydin, Erkan
AU - Liu, Jiang
AU - Ugur, Esma
AU - Harrison, George T.
AU - Xu, Lujia
AU - Vishal, Badri
AU - Yildirim, Bumin K.
AU - Wang, Mingcong
AU - Ali, Roshan
AU - Subbiah, Anand S.
AU - Yazmaciyan, Aren
AU - Zhumagali, Shynggys
AU - Yan, Wenbo
AU - Gao, Yajun
AU - Song, Zhaoning
AU - Li, Chongwen
AU - Fu, Sheng
AU - Chen, Bin
AU - ur Rehman, Atteq
AU - Babics, Maxime
AU - Razzaq, Arsalan
AU - De Bastiani, Michele
AU - Allen, Thomas G.
AU - Schwingenschlögl, Udo
AU - Yan, Yanfa
AU - Laquai, Frédéric
AU - Sargent, Edward H.
AU - De Wolf, Stefaan
N1 - Publisher Copyright:
© 2023 Elsevier Inc.
PY - 2024/1/17
Y1 - 2024/1/17
N2 - Perovskite/perovskite/silicon triple-junction solar cells hold promise for surpassing their two-junction counterparts in performance. Achieving this requires monolithic integration of a ∼2.0 eV band-gap perovskite subcell, characterized by a high bromide:iodide ratio (>7:3), and with low-temperature processability and high optoelectronic quality. However, light-induced phase segregation in such perovskites remains a challenge. To address this, we propose modifying the wide-band-gap perovskite with potassium thiocyanate (KSCN) and methylammonium iodide (MAI) co-additives, where SCN− increases the perovskite grain size, reducing the grain boundary defect density; K+ immobilizes the halide, preventing the formation of halide vacancies; and MA+ eliminates the residual light-destabilizing SCN− in the perovskite films via double displacement reactions. Our co-additive strategy enables enhanced photostability, whereas individual usage of MAI and KSCN would result in adverse effects. Triple-junction tandem solar cells, incorporating co-additive-modified 2.0 eV perovskites as top cell absorbers, reach a 3.04 V open-circuit voltage and a PCE of 26.4% over a 1 cm2 area.
AB - Perovskite/perovskite/silicon triple-junction solar cells hold promise for surpassing their two-junction counterparts in performance. Achieving this requires monolithic integration of a ∼2.0 eV band-gap perovskite subcell, characterized by a high bromide:iodide ratio (>7:3), and with low-temperature processability and high optoelectronic quality. However, light-induced phase segregation in such perovskites remains a challenge. To address this, we propose modifying the wide-band-gap perovskite with potassium thiocyanate (KSCN) and methylammonium iodide (MAI) co-additives, where SCN− increases the perovskite grain size, reducing the grain boundary defect density; K+ immobilizes the halide, preventing the formation of halide vacancies; and MA+ eliminates the residual light-destabilizing SCN− in the perovskite films via double displacement reactions. Our co-additive strategy enables enhanced photostability, whereas individual usage of MAI and KSCN would result in adverse effects. Triple-junction tandem solar cells, incorporating co-additive-modified 2.0 eV perovskites as top cell absorbers, reach a 3.04 V open-circuit voltage and a PCE of 26.4% over a 1 cm2 area.
KW - additive engineering
KW - high-voltage solar cells
KW - light-induced phase segregation
KW - triple-junction tandem solar cells
KW - wide-band-gap perovskite
UR - http://www.scopus.com/inward/record.url?scp=85181242014&partnerID=8YFLogxK
U2 - 10.1016/j.joule.2023.11.018
DO - 10.1016/j.joule.2023.11.018
M3 - Article
AN - SCOPUS:85181242014
SN - 2542-4351
VL - 8
SP - 224
EP - 240
JO - Joule
JF - Joule
IS - 1
ER -