Molecularly-porous ultrathin membranes for highly selective organic solvent nanofiltration

Tiefan Huang, Basem Moosa, PHUONG HOANG, Jiangtao Liu, Stefan Chisca, Gengwu Zhang, Mram Z. Alyami, Niveen M. Khashab, Suzana Pereira Nunes

Research output: Contribution to journalArticlepeer-review

137 Scopus citations

Abstract

AbstractEngineering membranes for molecular separation in organic solvents is still a big challenge. When the selectivity increases, the permeability tends to drastically decrease, increasing the energy demands for the separation process. Ideally, organic solvent nanofiltration membranes should be thin to enhance the permeant transport, have a well-tailored nanoporosity and high stability in harsh solvents. Here, we introduce a trianglamine macrocycle as a molecular building block for cross-linked membranes, prepared by facile interfacial polymerization, for high-performance selective separations. The membranes were prepared via a two-in-one strategy, enabled by the amine macrocycle, by simultaneously reducing the thickness of the thin-film layers (
Original languageEnglish (US)
JournalNature Communications
Volume11
Issue number1
DOIs
StatePublished - Nov 18 2020

Bibliographical note

KAUST Repository Item: Exported on 2020-11-24
Acknowledgements: This research was supported by the King Abdullah University of Science and Technology (KAUST) base lines and CCF grant of the Advanced Membrane and Porous Materials Center. The TOC entry graph was created by Ivan Gromicho, Scientific Illustrator at KAUST. We thank Valentina-Elena Musteata, KAUST for the TEM characterization, and Kecheng Xie, China University of Mining Technology, for the molecular modeling.

Fingerprint

Dive into the research topics of 'Molecularly-porous ultrathin membranes for highly selective organic solvent nanofiltration'. Together they form a unique fingerprint.

Cite this