Abstract
The molecular structure and dynamics of interlayer water of 14 Å tobermorite are investigated based on molecular dynamics (MD) simulations. Calculated structural parameters of the interlayer water configuration are in good agreement with current knowledge of the refined structure. The MD simulations provide detailed information on the position and mobility of the hydrogen and oxygen of interlayer water, as well as its self-diffusion coefficient, through the interlayer of 14 Å tobermorite. Comparison of the MD simulation results at 100 and 300 K demonstrates that water molecules in the interlayer maintain their structure but change their mobility. The dominant configuration and self-diffusion coefficient of interlayer water are obtained in this study. Copyright © 2013 Japan Concrete Institute.
Original language | English (US) |
---|---|
Pages (from-to) | 180-188 |
Number of pages | 9 |
Journal | Journal of Advanced Concrete Technology |
Volume | 11 |
Issue number | 6 |
DOIs | |
State | Published - 2013 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledged KAUST grant number(s): KUS-11-004021
Acknowledgements: This publication was based on work supported in part by Award No. KUS-11-004021, made by King Abdullah University of Science and Technology (KAUST).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.