Abstract
The lifespan of high-energy-density lithium metal batteries (LMBs) is hindered by heterogeneous solid electrolyte interphase (SEI). The rational design of electrolytes is strongly considered to obtain uniform SEI in working batteries. Herein, a modification of nitrate ion (NO3−) is proposed and validated to improve the homogeneity of the SEI in practical LMBs. NO3− is connected to an ether-based moiety to form isosorbide dinitrate (ISDN) to break the resonance structure of NO3− and improve the reducibility. The decomposition of non-resonant −NO3 in ISDN enriches SEI with abundant LiNxOy and induces uniform lithium deposition. Lithium–sulfur batteries with ISDN additives deliver a capacity retention of 83.7 % for 100 cycles compared with rapid decay with LiNO3 after 55 cycles. Moreover, lithium–sulfur pouch cells with ISDN additives provide a specific energy of 319 Wh kg−1 and undergo 20 cycles. This work provides a realistic reference in designing additives to modify the SEI for stabilizing LMBs.
Original language | English (US) |
---|---|
Journal | Angewandte Chemie - International Edition |
Volume | 61 |
Issue number | 20 |
DOIs | |
State | Published - May 9 2022 |
Externally published | Yes |
Bibliographical note
Generated from Scopus record by KAUST IRTS on 2023-09-21ASJC Scopus subject areas
- General Chemistry
- Catalysis