Modeling Data with Excess Zeros and Measurement Error: Application to Evaluating Relationships between Episodically Consumed Foods and Health Outcomes

Victor Kipnis, Douglas Midthune, Dennis W. Buckman, Kevin W. Dodd, Patricia M. Guenther, Susan M. Krebs-Smith, Amy F. Subar, Janet A. Tooze, Raymond J. Carroll, Laurence S. Freedman

Research output: Contribution to journalArticlepeer-review

217 Scopus citations

Abstract

Dietary assessment of episodically consumed foods gives rise to nonnegative data that have excess zeros and measurement error. Tooze et al. (2006, Journal of the American Dietetic Association 106, 1575-1587) describe a general statistical approach (National Cancer Institute method) for modeling such food intakes reported on two or more 24-hour recalls (24HRs) and demonstrate its use to estimate the distribution of the food's usual intake in the general population. In this article, we propose an extension of this method to predict individual usual intake of such foods and to evaluate the relationships of usual intakes with health outcomes. Following the regression calibration approach for measurement error correction, individual usual intake is generally predicted as the conditional mean intake given 24HR-reported intake and other covariates in the health model. One feature of the proposed method is that additional covariates potentially related to usual intake may be used to increase the precision of estimates of usual intake and of diet-health outcome associations. Applying the method to data from the Eating at America's Table Study, we quantify the increased precision obtained from including reported frequency of intake on a food frequency questionnaire (FFQ) as a covariate in the calibration model. We then demonstrate the method in evaluating the linear relationship between log blood mercury levels and fish intake in women by using data from the National Health and Nutrition Examination Survey, and show increased precision when including the FFQ information. Finally, we present simulation results evaluating the performance of the proposed method in this context.
Original languageEnglish (US)
Pages (from-to)1003-1010
Number of pages8
JournalBiometrics
Volume65
Issue number4
DOIs
StatePublished - Mar 3 2009
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-CI-016-04
Acknowledgements: R.J.C.’s research was supported by a grant from the NationalCancer Institute (CA 57030) and by Award KUS-CI-016-04,made by King Abdullah University of Science and Technology.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.

Fingerprint

Dive into the research topics of 'Modeling Data with Excess Zeros and Measurement Error: Application to Evaluating Relationships between Episodically Consumed Foods and Health Outcomes'. Together they form a unique fingerprint.

Cite this