Modeling and clustering users with evolving profiles in usage streams

Chongsheng Zhang, Florent Masseglia, Xiangliang Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

Today, there is an increasing need of data stream mining technology to discover important patterns on the fly. Existing data stream models and algorithms commonly assume that users' records or profiles in data streams will not be updated or revised once they arrive. Nevertheless, in various applications such asWeb usage, the records/profiles of the users can evolve along time. This kind of streaming data evolves in two forms, the streaming of tuples or transactions as in the case of traditional data streams, and more importantly, the evolving of user records/profiles inside the streams. Such data streams bring difficulties on modeling and clustering for exploring users' behaviors. In this paper, we propose three models to summarize this kind of data streams, which are the batch model, the Evolving Objects (EO) model and the Dynamic Data Stream (DDS) model. Through creating, updating and deleting user profiles, these models summarize the behaviors of each user as a profile object. Based upon these models, clustering algorithms are employed to discover interesting user groups from the profile objects. We have evaluated all the proposed models on a large real-world data set, showing that the DDS model summarizes the data streams with evolving tuples more efficiently and effectively, and provides better basis for clustering users than the other two models. © 2012 IEEE.
Original languageEnglish (US)
Title of host publication2012 19th International Symposium on Temporal Representation and Reasoning
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Pages133-140
Number of pages8
ISBN (Print)9780769548029
DOIs
StatePublished - Sep 2012

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01

Fingerprint

Dive into the research topics of 'Modeling and clustering users with evolving profiles in usage streams'. Together they form a unique fingerprint.

Cite this