Abstract
Enhancing the hydrodynamic interfacial mobility of bubbles and droplets in multiphase systems is expected to reduce the characteristic coalescence times and thereby affect the stability of gas or liquid emulsions that are of wide industrial and biological importance. However, by comparing the controlled collision of bubbles or water droplets with mobile or immobile liquid interfaces, in a pure fluorocarbon liquid, we demonstrate that collisions involving mobile surfaces result in a significantly stronger series of rebounds before the rapid coalescence event. The stronger rebound is explained by the lower viscous dissipation during collisions involving mobile surfaces. We present direct numerical simulations to confirm that the observed rebound is enhanced with increased surface mobility. These observations require a reassessment of the role of surface mobility for controlling the dynamic stability of gas or liquid emulsion systems relevant to a wide range of processes, from microfluidics and pharmaceuticals to food and crude oil processing.
Original language | English (US) |
---|---|
Pages (from-to) | eaaw4292 |
Journal | Science advances |
Volume | 5 |
Issue number | 10 |
DOIs | |
State | Published - Oct 25 2019 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: We acknowledge the use of the Gerris solver in our investigation. We thank R. Manica and E. Klaseboer for early involvement in the project related to the experiment theoretical modeling attempts. Last, we acknowledge two anonymous reviewers for the constructive suggestions including the three-phase simulations.