Abstract
Mixed matrix membranes (MMMs) are challenged by the non-ideal interfacial morphologies that leads to the weakened gas separation performances and mechanical strength. Filler surface modification with organosilanes is an effective approach to build the linkage between polymer and the fillers. In this study, we fabricated MMMs by introducing aminosilane functionalized graphene oxide (f-GO) nanosheets into Pebax 1657 matrix. The introduction of f-GO decreased the crystallinity and increased chain mobility of Pebax matrix. Benefiting from the improved filler dispersion, semi-interpenetrated Pebax chains in the Si-O-Si network at the interface, and the high intrinsic mechanical strength of GO, the MMMs exhibit a 1.7-times higher Young's modulus and 1.1-times higher break strength. The amino groups on GO help to construct a facilitated transport pathway along the polymer-filler interface. With greatly improved CO separation performances in dry state, the membranes exhibited even higher performances in humidified state. Particularly, Pebax/f-GO-0.9% membrane showed a high CO permeability of 934.3 Barrer, and a CO/CH selectivity of 40.9, a CO/N selectivity of 71.1, surpassing the Robeson upper bound and quite promising for carbon capture.
Original language | English (US) |
---|---|
Pages (from-to) | 343-354 |
Number of pages | 12 |
Journal | Journal of Membrane Science |
Volume | 570-571 |
DOIs | |
State | Published - Oct 27 2018 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21676201, 21706189, 51503146, 21878277), Tianjin Municipal Education Commission Scientific Research Project (2017KJ074), Science and Technology Plans of Tianjin (18JCQNJC06800), National Key Research and Development Plan (2017YFC0404001), Technology Research Funds Projects of Ocean (201305004-5), the Program for Innovative Research Team in University of Tianjin (No. TD13-5044), the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) of Ministry of Education of China (Grand no. IRT13084) and Science and Technology Plans of Tianjin (17PTSYJC00050).