Abstract
High-mobility PBTTT thin-film transistors are modeled with a mobility edge model and compared with P3HT. Their improved performance is not due to a low trap density but rather due to high mobility in the crystallites. Characterization of delaminated films with transmission electron microscopy and atomic force microscopy indicates terraces that are composed of nanometer-scale features (see figure). © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Original language | English (US) |
---|---|
Pages (from-to) | 697-701 |
Number of pages | 5 |
Journal | Advanced Materials |
Volume | 22 |
Issue number | 6 |
DOIs | |
State | Published - Feb 9 2010 |
Externally published | Yes |
Bibliographical note
Generated from Scopus record by KAUST IRTS on 2023-02-14ASJC Scopus subject areas
- Mechanics of Materials
- General Materials Science
- Mechanical Engineering