TY - JOUR
T1 - Microorganisms Involved in Methylmercury Demethylation and Mercury Reduction are Widely Distributed and Active in the Bathypelagic Deep Ocean Waters
AU - Sanz-Sáez, Isabel
AU - Bravo, Andrea G.
AU - Ferri, Marta
AU - Carreras, Joan Martí
AU - Sánchez, Olga
AU - Sebastian, Marta
AU - Ruiz-González, Clara
AU - Capo, Eric
AU - Duarte, Carlos M.
AU - Gasol, Josep M.
AU - Sánchez, Pablo
AU - Acinas, Silvia G.
N1 - Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society
PY - 2024/8/6
Y1 - 2024/8/6
N2 - The ocean’s mercury (Hg) content has tripled due to anthropogenic activities, and although the dark ocean (>200 m) has become an important Hg reservoir, concentrations of the toxic and bioaccumulative methylmercury (MeHg) are low and therefore very difficult to measure. As a consequence, the current understanding of the Hg cycle in the deep ocean is severely data-limited, and the factors controlling MeHg, as well as its transformation rates, remain largely unknown. By analyzing 52 globally distributed bathypelagic deep-ocean metagenomes and 26 new metatranscriptomes from the Malaspina Expedition, our study reveals the widespread distribution and expression of bacterial-coding genes merA and merB in the global bathypelagic ocean (∼4000 m depth). These genes, associated with HgII reduction and MeHg demethylation, respectively, are particularly prevalent within the particle-attached fraction. Moreover, our results indicate that water mass age and the organic matter composition shaped the structure of the communities harboring merA and merB genes living in different particle size fractions, their abundance, and their expression levels. Members of the orders Corynebacteriales, Rhodobacterales, Alteromonadales, Oceanospirillales, Moraxellales, and Flavobacteriales were the main taxonomic players containing merA and merB genes in the deep ocean. These findings, together with our previous results of pure culture isolates of the deep bathypelagic ocean possessing the metabolic capacity to degrade MeHg, indicated that both methylmercury demethylation and HgII reduction likely occur in the global dark ocean, the largest biome in the biosphere.
AB - The ocean’s mercury (Hg) content has tripled due to anthropogenic activities, and although the dark ocean (>200 m) has become an important Hg reservoir, concentrations of the toxic and bioaccumulative methylmercury (MeHg) are low and therefore very difficult to measure. As a consequence, the current understanding of the Hg cycle in the deep ocean is severely data-limited, and the factors controlling MeHg, as well as its transformation rates, remain largely unknown. By analyzing 52 globally distributed bathypelagic deep-ocean metagenomes and 26 new metatranscriptomes from the Malaspina Expedition, our study reveals the widespread distribution and expression of bacterial-coding genes merA and merB in the global bathypelagic ocean (∼4000 m depth). These genes, associated with HgII reduction and MeHg demethylation, respectively, are particularly prevalent within the particle-attached fraction. Moreover, our results indicate that water mass age and the organic matter composition shaped the structure of the communities harboring merA and merB genes living in different particle size fractions, their abundance, and their expression levels. Members of the orders Corynebacteriales, Rhodobacterales, Alteromonadales, Oceanospirillales, Moraxellales, and Flavobacteriales were the main taxonomic players containing merA and merB genes in the deep ocean. These findings, together with our previous results of pure culture isolates of the deep bathypelagic ocean possessing the metabolic capacity to degrade MeHg, indicated that both methylmercury demethylation and HgII reduction likely occur in the global dark ocean, the largest biome in the biosphere.
KW - bacterial demethylation
KW - bathypelagic
KW - mer genes
KW - mercury
KW - metagenomes
KW - metatranscriptomes
KW - methylmercury
UR - http://www.scopus.com/inward/record.url?scp=85199568396&partnerID=8YFLogxK
U2 - 10.1021/acs.est.4c00663
DO - 10.1021/acs.est.4c00663
M3 - Article
C2 - 39046290
AN - SCOPUS:85199568396
SN - 0013-936X
VL - 58
SP - 13795
EP - 13807
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 31
ER -