Microbiomes of gall-inducing copepod crustaceans from the corals Stylophora pistillata (Scleractinia) and Gorgonia ventalina (Alcyonacea)

Pavel V. Shelyakin, Sofya K. Garushyants, Mikhail A. Nikitin, Sofya V. Mudrova, Michael Berumen, Arjen G.C.L. Speksnijder, Bert W. Hoeksema, Diego Fontaneto, Mikhail S. Gelfand, Viatcheslav N. Ivanenko*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Corals harbor complex and diverse microbial communities that strongly impact host fitness and resistance to diseases, but these microbes themselves can be influenced by stresses, like those caused by the presence of macroscopic symbionts. In addition to directly influencing the host, symbionts may transmit pathogenic microbial communities. We analyzed two coral gall-forming copepod systems by using 16S rRNA gene metagenomic sequencing: (1) the sea fan Gorgonia ventalina with copepods of the genus Sphaerippe from the Caribbean and (2) the scleractinian coral Stylophora pistillata with copepods of the genus Spaniomolgus from the Saudi Arabian part of the Red Sea. We show that bacterial communities in these two systems were substantially different with Actinobacteria, Alphaproteobacteria, and Betaproteobacteria more prevalent in samples from Gorgonia ventalina, and Gammaproteobacteria in Stylophora pistillata. In Stylophora pistillata, normal coral microbiomes were enriched with the common coral symbiont Endozoicomonas and some unclassified bacteria, while copepod and gall-tissue microbiomes were highly enriched with the family ME2 (Oceanospirillales) or Rhodobacteraceae. In Gorgonia ventalina, no bacterial group had significantly different prevalence in the normal coral tissues, copepods, and injured tissues. The total microbiome composition of polyps injured by copepods was different. Contrary to our expectations, the microbial community composition of the injured gall tissues was not directly affected by the microbiome of the gall-forming symbiont copepods.

Original languageEnglish (US)
Article number11563
JournalScientific Reports
Volume8
Issue number1
DOIs
StatePublished - Dec 1 2018

Bibliographical note

Funding Information:
Fieldwork at the Red Sea was supported by KAUST Grant to MLB. The fieldwork to St. Eustatius was supported by a Temminck-Fellowship to VNI by Naturalis Biodiversity Center; St. Eustatius Marine Parks (STENAPA), Caribbean Netherlands Science Institute (CNSI) and Scubaqua Dive Center provided logistic support. DNA extraction was funded by the Russian Foundation for Basic Research (RFBR) grant 18-54-45016. Microscopy was supported by RFBR grant 18-04-01192. Data analysis was supported by the Russian Science Foundation under grant 14-50-00150 to IITP and under a CNR-RFBR Italian-Russian bilateral agreement grant (RFBR grant 15-54-78061) to DF and VNI. Next Gen Sequencing was supported by the Dutch Economic Fund for Structure Enhancement (FES). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Publisher Copyright:
© 2018, The Author(s).

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Microbiomes of gall-inducing copepod crustaceans from the corals Stylophora pistillata (Scleractinia) and Gorgonia ventalina (Alcyonacea)'. Together they form a unique fingerprint.

Cite this