Abstract
Recent big data analyses have illuminated marine microbial diversity from a global perspective, focusing on planktonic microorganisms. Here, we analyze 2.5 terabases of newly sequenced datasets and the Tara Oceans metagenomes to study the diversity of biofilm-forming marine microorganisms. We identify more than 7,300 biofilm-forming ‘species’ that are undetected in seawater analyses, increasing the known microbial diversity in the oceans by more than 20%, and provide evidence for differentiation across oceanic niches. Generation of a gene distribution profile reveals a functional core across the biofilms, comprised of genes from a variety of microbial phyla that may play roles in stress responses and microbe-microbe interactions. Analysis of 479 genomes reconstructed from the biofilm metagenomes reveals novel biosynthetic gene clusters and CRISPR-Cas systems. Our data highlight the previously underestimated ocean microbial diversity, and allow mining novel microbial lineages and gene resources.
Original language | English (US) |
---|---|
Article number | 517 |
Journal | Nature Communications |
Volume | 10 |
Issue number | 1 |
DOIs | |
State | Published - Dec 1 2019 |
Bibliographical note
Funding Information:We thank Mr. Huihui Zhu, Ms. Yujia Nie, and Ms. Xin Gong from Novogene for DNA sequencing and technical support. We thank Mr. Bo Yang for technical support in construction of Linux platform. We thank Ms. Qian Ding, Dr. Zhiwu Sun, Dr. Tim Wong, and Dr. Zhaoming Gao for sample collection. The authors are also grateful for English editing by Ms. Alice Cheung. We also thank the fundings provided by the China Ocean Mineral Resources Research and Development Association (COMRRDA17SC01) and the Strategic Priority Research Program of Chinese Academy of Sciences (XDB06010102) to P.Y.Q.
Publisher Copyright:
© 2019, The Author(s).
ASJC Scopus subject areas
- Chemistry(all)
- Biochemistry, Genetics and Molecular Biology(all)
- General
- Physics and Astronomy(all)