Manipulating the Morphology of P3HT–PCBM Bulk Heterojunction Blends with Solvent Vapor Annealing

Eric Verploegen, Chad E. Miller, Kristin Schmidt, Zhenan Bao, Michael F. Toney

Research output: Contribution to journalArticlepeer-review

179 Scopus citations

Abstract

Using grazing incidence X-ray scattering, we observe the effects of solvent vapors upon the morphology of poly(3-hexylthiophene)-phenyl-C 61-butyric acid methyl ester (P3HT-PCBM) bulk heterojunction thin film blends in real time; allowing us to observe morphological rearrangements that occur during this process as a function of solvent. We detail the swelling of the P3HT crystallites upon the introduction of solvent and the resulting changes in the P3HT crystallite morphology. We also demonstrate the ability for tetrahydrofuran vapor to induce crystallinity in PCBM domains. Additionally, we measure the nanoscale phase segregated domain size as a function of solvent vapor annealing and correlate this to the changes observed in the crystallite morphology of each component. Finally, we discuss the implications of the morphological changes induced by solvent vapor annealing on the device properties of BHJ solar cells. © 2012 American Chemical Society.
Original languageEnglish (US)
Pages (from-to)3923-3931
Number of pages9
JournalChemistry of Materials
Volume24
Issue number20
DOIs
StatePublished - Oct 3 2012
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-C1-015-21
Acknowledgements: This publication was partially based on work supported by the Center for Advanced Molecular Photovoltaics, Award No. KUS-C1-015-21, made by King Abdullah University of Science and Technology (KAUST). E.V. would like to thank the Eastman Kodak Corporation and the Kodak Fellows Program for support. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. The authors would like to thank Alex Hexemer, Eric Schaible, Cheng Wang, and Steven Alvarez for their help with the GISAXS experiments at the Advanced Light Source. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.

Fingerprint

Dive into the research topics of 'Manipulating the Morphology of P3HT–PCBM Bulk Heterojunction Blends with Solvent Vapor Annealing'. Together they form a unique fingerprint.

Cite this