Abstract
We present “Magic123”, a two-stage coarse-to-fine approach for high-quality, textured 3D mesh generation from a single image in the wild using both 2D and 3D priors. In the first stage, we optimize a neural radiance field to produce a coarse geometry. In the second stage, we adopt a memory-efficient differentiable mesh representation to yield a high-resolution mesh with a visually appealing texture. In both stages, the 3D content is learned through reference-view supervision and novel-view guidance by a joint 2D and 3D diffusion prior. We introduce a trade-off parameter between the 2D and 3D priors to control the details and 3D consistencies of the generation. Magic123 demonstrates a significant improvement over previous image-to-3D techniques, as validated through extensive experiments on diverse synthetic and real-world images.
Original language | English (US) |
---|---|
State | Published - 2024 |
Event | 12th International Conference on Learning Representations, ICLR 2024 - Hybrid, Vienna, Austria Duration: May 7 2024 → May 11 2024 |
Conference
Conference | 12th International Conference on Learning Representations, ICLR 2024 |
---|---|
Country/Territory | Austria |
City | Hybrid, Vienna |
Period | 05/7/24 → 05/11/24 |
Bibliographical note
Publisher Copyright:© 2024 12th International Conference on Learning Representations, ICLR 2024. All rights reserved.
ASJC Scopus subject areas
- Language and Linguistics
- Computer Science Applications
- Education
- Linguistics and Language