Low-bias photoelectrochemical water splitting via mediating trap states and small polaron hopping

Hao Wu, Lei Zhang, Aijun Du, Rowshanak Irani, Roel van de Krol, Fatwa F. Abdi, Yun Hau Ng*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

86 Scopus citations

Abstract

Metal oxides are promising for photoelectrochemical (PEC) water splitting due to their robustness and low cost. However, poor charge carrier transport impedes their activity, particularly at low-bias voltage. Here we demonstrate the unusual effectiveness of phosphorus doping into bismuth vanadate (BiVO4) photoanode for efficient low-bias PEC water splitting. The resulting BiVO4 photoanode shows a separation efficiency of 80% and 99% at potentials as low as 0.6 and 1.0 VRHE, respectively. Theoretical simulation and experimental analysis collectively verify that the record performance originates from the unique phosphorus-doped BiVO4 configuration with concurrently mediated carrier density, trap states, and small polaron hopping. With NiFeOx cocatalyst, the BiVO4 photoanode achieves an applied bias photon-to-current efficiency of 2.21% at 0.6 VRHE. The mechanistic understanding of the enhancement of BiVO4 properties provides key insights in trap state passivation and polaron hopping for most photoactive metal oxides.

Original languageEnglish (US)
Article number6231
JournalNature Communications
Volume13
Issue number1
DOIs
StatePublished - Dec 2022

Bibliographical note

Publisher Copyright:
© 2022, The Author(s).

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Low-bias photoelectrochemical water splitting via mediating trap states and small polaron hopping'. Together they form a unique fingerprint.

Cite this