Abstract
The first-order electrostatic interaction energy between two far-apart anisotropic atoms depends not only on the distance between them but also on their relative orientation, according to Rayleigh-Schrödinger perturbation theory. Using the first-order interaction energy and the continuum model, we study the long-range interaction between a pair of parallel pristine graphene sheets at zero temperature. The asymptotic form of the obtained potential density, &epsi:(D) &prop: ?D ?3 ?O(D?4), is consistent with the random phase approximation and Lifshitz theory. Accordingly, neglectance of the anisotropy, especially the nonzero first-order interaction energy, is the reason why the widely used Lennard-Jones potential approach and dispersion corrections in density functional theory give a wrong asymptotic form ε(D) &prop: ?D?4. © EPLA, 2015.
Original language | English (US) |
---|---|
Pages (from-to) | 43002 |
Journal | EPL (Europhysics Letters) |
Volume | 109 |
Issue number | 4 |
DOIs | |
State | Published - Mar 5 2015 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: Research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST).
ASJC Scopus subject areas
- General Physics and Astronomy