Abstract
Plasmodium parasites, the causal agents of malaria, result in more than 1 million deaths annually. Plasmodium are unicellular eukaryotes with small ~23 Mb genomes encoding ~5200 protein-coding genes. The protein-coding genes comprise about half of these genomes. Although evolutionary processes have a significant impact on malaria control, the selective pressures within Plasmodium genomes are poorly understood, particularly in the non-protein-coding portion of the genome. We use evolutionary methods to describe selective processes in both the coding and non-coding regions of these genomes. Based on genome alignments of seven Plasmodium species, we show that protein-coding, intergenic and intronic regions are all subject to purifying selection and we identify 670 conserved non-genic elements. We then use genome-wide polymorphism data from P. falciparum to describe short-term selective processes in this species and identify some candidate genes for balancing (diversifying) selection. Our analyses suggest that there are many functional elements in the non-genic regions of these genomes and that adaptive evolution has occurred more frequently in the protein-coding regions of the genome. © 2010 Nygaard et al.
Original language | English (US) |
---|---|
Pages (from-to) | e1001099 |
Journal | PLoS Genetics |
Volume | 6 |
Issue number | 9 |
DOIs | |
State | Published - Sep 9 2010 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01ASJC Scopus subject areas
- Ecology, Evolution, Behavior and Systematics
- Genetics
- Molecular Biology
- Genetics(clinical)
- Cancer Research