Abstract
In this paper, some local and parallel discretizations and adaptive finite element algorithms are proposed and analyzed for nonlinear elliptic boundary value problems in both two and three dimensions. The main technique is to use a standard finite element discretization on a coarse grid to approximate low frequencies and then to apply some linearized discretization on a fine grid to correct the resulted residual (which contains mostly high frequencies) by some local/parallel procedures. The theoretical tools for analyzing these methods are some local a priori and a posteriori error estimates for finite element solutions on general shape-regular grids that are also obtained in this paper.
Original language | English (US) |
---|---|
Pages (from-to) | 293-327 |
Number of pages | 35 |
Journal | Advances in Computational Mathematics |
Volume | 14 |
Issue number | 4 |
DOIs | |
State | Published - Jan 1 2001 |
Externally published | Yes |
Bibliographical note
Generated from Scopus record by KAUST IRTS on 2023-02-15ASJC Scopus subject areas
- Computational Mathematics
- Applied Mathematics