Abstract
In rechargeable lithium-ion batteries, understanding the atomic-scale mechanism of Li-induced structural evolution occurring at the host electrode materials provides essential knowledge for design of new high performance electrodes. Here, we report a new crystalline-crystalline phase transition mechanism in single-crystal Zn-Sb intermetallic nanowires upon lithiation. Using in situ transmission electron microscopy, we observed that stacks of atomic planes in an intermediate hexagonal (h-)LiZnSb phase are "shuffled" to accommodate the geometrical confinement stress arising from lamellar nanodomains intercalated by lithium ions. Such atomic rearrangement arises from the anisotropic lithium diffusion and is accompanied by appearance of partial dislocations. This transient structure mediates further phase transition from h-LiZnSb to cubic (c-)Li2ZnSb, which is associated with a nearly "zero-strain" coherent interface viewed along the [001]h/[111]c directions. This study provides new mechanistic insights into complex electrochemically driven crystalline-crystalline phase transitions in lithium-ion battery electrodes and represents a noble example of atomic-level structural and interfacial rearrangements.
Original language | English (US) |
---|---|
Pages (from-to) | 5301-5307 |
Number of pages | 7 |
Journal | Nano Letters |
Volume | 14 |
Issue number | 9 |
DOIs | |
State | Published - Aug 28 2014 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: R.S.-Y. acknowledges the financial support from the National Science Foundation (Awards No. CMMI-1200383 and DMR-1410560) and the American Chemical Society-Petroleum Research Fund (Award No. 51458-ND10). The acquisition of the UIC JEOL JEM-ARM200CF is supported by an MRI-R2 grant from the National Science Foundation (Award No. DMR-0959470). Support from the UIC Research Resources Center is also acknowledged.
ASJC Scopus subject areas
- Bioengineering
- General Materials Science
- General Chemistry
- Mechanical Engineering
- Condensed Matter Physics