Abstract
Ozone, electrolysis and granular activated carbon (GAC) were examined as potential post-treatments to follow a household-scale biologically activated membrane bioreactor (BAMBi), treating a wash water containing trace urine and feces contamination. Each post-treatment was evaluated for abilities and reaction preferences to remove or transform dissolved organic carbon (DOC), chemical structures that contribute color, and assimilable organic carbon (AOC), which can support bacterial regrowth. Batch treatment with each technology demonstrated an ability to remove ≥95% DOC. Ozone demonstrated a reaction selectivity through increased reaction rates with larger compounds and color-contributing compounds. Electrolysis and GAC demonstrated generally less-selective reactivity. Adding post-treatments to full-scale systems reduced DOC (55–91%), AOC (34–62%), and color (75–98%), without significant reaction selectivity. These reductions in DOC and AOC were not linked to reduction of bacterial concentrations in treated water. Reductions in bacterial concentrations were observed with ozone and electrolysis, but this is credited to oxidation chemicals produced in these systems and not the removal or transformations of organic materials.
Original language | English (US) |
---|---|
Pages (from-to) | 137489 |
Journal | Science of the Total Environment |
Volume | 721 |
DOIs | |
State | Published - 2020 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2021-07-13Acknowledgements: The authors would like to thank Jacqueline Traber, Adriano Joss, Richard Fankhauser, Stefano Lo Russo, Karin Rottermann, Sylvia Richter and Kai Udert for valuable support throughout the project. This work was supported by the Bill & Melinda Gates Foundation, Seattle, WA in the context of the Blue Diversion Project and the Blue Diversion AUTARKY-Project [grant numbers OPP1069570, OPP1111293].
Fingerprint
Dive into the research topics of 'Linking transformations of organic carbon to post-treatment performance in a biological water recycling system'. Together they form a unique fingerprint.Datasets
-
Data for: Linking transformations of organic carbon to post-treatment performance in a biological water recycling system
Ziemba, C. (Creator), Larive, O. (Creator), Reynaert, E. (Creator), Huisman, T. (Creator) & Morgenroth, E. (Creator), Eawag: Swiss Federal Institute of Aquatic Science and Technology, 2020
DOI: 10.25678/00020v, http://hdl.handle.net/10754/687084
Dataset