TY - JOUR
T1 - Linear closed-loop control of fluid instabilities and noise-induced perturbations: A review of approaches and tools
AU - Sipp, Denis
AU - Schmid, Peter J.
N1 - Generated from Scopus record by KAUST IRTS on 2022-09-13
PY - 2016/3/1
Y1 - 2016/3/1
N2 - This review article is concerned with the design of linear reduced-order models and control laws for closed-loop control of instabilities in transitional flows. For oscillator flows, such as open-cavity flows, we suggest the use of optimal control techniques with Galerkin models based on unstable global modes and balanced modes. Particular attention has to be paid to stability-robustness properties of the control law. Specifically, we show that large delays and strong amplification between the control input and the estimation sensor may be detrimental both to performance and robustness. For amplifier flows, such as backward-facing step flow, the requirement to account for the upstream disturbance environment rules out Galerkin models. In this case, an upstream sensor is introduced to detect incoming perturbations, and identification methods are used to fit a model structure to available input-output data. Control laws, obtained by direct inversion of the input-output relations, are found to be robust when applied to the large-scale numerical simulation. All the concepts are presented in a step-by-step manner, and numerical codes are provided for the interested reader.
AB - This review article is concerned with the design of linear reduced-order models and control laws for closed-loop control of instabilities in transitional flows. For oscillator flows, such as open-cavity flows, we suggest the use of optimal control techniques with Galerkin models based on unstable global modes and balanced modes. Particular attention has to be paid to stability-robustness properties of the control law. Specifically, we show that large delays and strong amplification between the control input and the estimation sensor may be detrimental both to performance and robustness. For amplifier flows, such as backward-facing step flow, the requirement to account for the upstream disturbance environment rules out Galerkin models. In this case, an upstream sensor is introduced to detect incoming perturbations, and identification methods are used to fit a model structure to available input-output data. Control laws, obtained by direct inversion of the input-output relations, are found to be robust when applied to the large-scale numerical simulation. All the concepts are presented in a step-by-step manner, and numerical codes are provided for the interested reader.
UR - https://asmedigitalcollection.asme.org/appliedmechanicsreviews/article/doi/10.1115/1.4033345/421534/Linear-ClosedLoop-Control-of-Fluid-Instabilities
UR - http://www.scopus.com/inward/record.url?scp=84973373590&partnerID=8YFLogxK
U2 - 10.1115/1.4033345
DO - 10.1115/1.4033345
M3 - Article
SN - 0003-6900
VL - 68
JO - Applied Mechanics Reviews
JF - Applied Mechanics Reviews
IS - 2
ER -