TY - GEN
T1 - Leveraging Personal Navigation Assistant Systems Using Automated Social Media Traffic Reporting
AU - Wan, Xiangpeng
AU - Ghazzai, Hakim
AU - Massoud, Yehia
N1 - Generated from Scopus record by KAUST IRTS on 2022-09-13
PY - 2020/6/1
Y1 - 2020/6/1
N2 - Modern urbanization is demanding smarter technologies to improve a variety of applications in intelligent transportation systems to relieve the increasing amount of vehicular traffic congestion and incidents. Existing incident detection techniques are limited to the use of sensors in the transportation network and hang on human-inputs. Despite of its data abundance, social media is not well-exploited in such context. In this paper, we develop an automated traffic alert system based on Natural Language Processing (NLP) that filters this flood of information and extract important traffic-related bullets. To this end, we employ the fine-tuning Bidirectional Encoder Representations from Transformers (BERT) language embedding model to filter the related traffic information from social media. Then, we apply a question-answering model to extract necessary information characterizing the report event such as its exact location, occurrence time, and nature of the events. We demonstrate the adopted NLP approaches outperform other existing approach and, after effectively training them, we focus on real-world situation and show how the developed approach can, in real-time, extract traffic-related information and automatically convert them into alerts for navigation assistance applications such as navigation apps.
AB - Modern urbanization is demanding smarter technologies to improve a variety of applications in intelligent transportation systems to relieve the increasing amount of vehicular traffic congestion and incidents. Existing incident detection techniques are limited to the use of sensors in the transportation network and hang on human-inputs. Despite of its data abundance, social media is not well-exploited in such context. In this paper, we develop an automated traffic alert system based on Natural Language Processing (NLP) that filters this flood of information and extract important traffic-related bullets. To this end, we employ the fine-tuning Bidirectional Encoder Representations from Transformers (BERT) language embedding model to filter the related traffic information from social media. Then, we apply a question-answering model to extract necessary information characterizing the report event such as its exact location, occurrence time, and nature of the events. We demonstrate the adopted NLP approaches outperform other existing approach and, after effectively training them, we focus on real-world situation and show how the developed approach can, in real-time, extract traffic-related information and automatically convert them into alerts for navigation assistance applications such as navigation apps.
UR - https://ieeexplore.ieee.org/document/9140144/
UR - http://www.scopus.com/inward/record.url?scp=85089199645&partnerID=8YFLogxK
U2 - 10.1109/TEMSCON47658.2020.9140144
DO - 10.1109/TEMSCON47658.2020.9140144
M3 - Conference contribution
SN - 9781728142241
BT - 2020 IEEE Technology and Engineering Management Conference, TEMSCON 2020
PB - Institute of Electrical and Electronics Engineers Inc.
ER -