Abstract
This paper is devoted to the study of the problems of learning inner and general decision rules that are true for the maximum number of decision trees from a given set. Inner rules correspond to paths in decision trees from the root to terminal nodes. General rules are arbitrary rules that use attributes from the considered decision trees. We propose a polynomial time algorithm for the optimization of inner rules, show that the problem of optimization of general rules is NP-hard, and describe a heuristic for this problem. We compare the considered algorithm and heuristic experimentally on artificially generated datasets and induced from them decision trees with Gini index as a splitting criterion.
Original language | English (US) |
---|---|
Title of host publication | 30TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT |
State | Published - Sep 19 2022 |
Bibliographical note
KAUST Repository Item: Exported on 2022-12-14Acknowledgements: Research reported in this publication was supported by King Abdullah University of Science and Technology (KAUST). The authors are grateful to the anonymous reviewers for useful comments and suggestions.