Large-area transfer of two-dimensional materials free of cracks, contamination and wrinkles via controllable conformal contact

Yixuan Zhao, Yuqing Song, Zhaoning Hu, Wendong Wang, Zhenghua Chang, Yan Zhang, Qi Lu, Haotian Wu, Junhao Liao, Wentao Zou, Xin Gao, Kaicheng Jia, La Zhuo, Jingyi Hu, Qin Xie, Rui Zhang, Xiaorui Wang, Luzhao Sun, Fangfang Li, Liming ZhengMing Wang, Jiawei Yang, Boyang Mao, Tiantian Fang, Fuyi Wang, Haotian Zhong, Wenlin Liu, Rui Yan, Jianbo Yin, Yanfeng Zhang, Yujie Wei, Hailin Peng, Li Lin, Zhongfan Liu

Research output: Contribution to journalArticlepeer-review

32 Scopus citations


The availability of graphene and other two-dimensional (2D) materials on a wide range of substrates forms the basis for large-area applications, such as graphene integration with silicon-based technologies, which requires graphene on silicon with outperforming carrier mobilities. However, 2D materials were only produced on limited archetypal substrates by chemical vapor deposition approaches. Reliable after-growth transfer techniques, that do not produce cracks, contamination, and wrinkles, are critical for layering 2D materials onto arbitrary substrates. Here we show that, by incorporating oxhydryl groups-containing volatile molecules, the supporting films can be deformed under heat to achieve a controllable conformal contact, enabling the large-area transfer of 2D films without cracks, contamination, and wrinkles. The resulting conformity with enhanced adhesion facilitates the direct delamination of supporting films from graphene, providing ultraclean surfaces and carrier mobilities up to 1,420,000 cm2 V−1 s−1 at 4 K.
Original languageEnglish (US)
JournalNature Communications
Issue number1
StatePublished - Dec 1 2022
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2023-09-21

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Chemistry
  • General Physics and Astronomy


Dive into the research topics of 'Large-area transfer of two-dimensional materials free of cracks, contamination and wrinkles via controllable conformal contact'. Together they form a unique fingerprint.

Cite this