LaBiTe3: An unusual thermoelectric material

Nirpendra Singh, Udo Schwingenschlögl

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


Using first-principles calculations and semi-classical Boltzmann transport theory, the thermoelectric properties of LaBiTe3 are studied. The band gap and, hence, the thermoelectric response are found to be easily tailored by application of strain. Independent of the temperature, the figure of merit turns out to be maximal at a doping of about 1.6 × 1021 cm-3. At room temperature we obtain values of 0.4 and 0.5 for unstrained and moderately strained LaBiTe3, which increases to 1.1 and 1.3 at 800 K. A large spin splitting is observed in the conduction band at the T point. Therefore, LaBiTe3 merges characteristics that are interesting for thermoelectric as well as spintronic devices.
Original languageEnglish (US)
Pages (from-to)805-808
Number of pages4
Journalphysica status solidi (RRL) - Rapid Research Letters
Issue number09
StatePublished - Jun 18 2014

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: We thank KAUST research computing for providing the computational resources for this study. N.S. acknowledges SABIC for financial support. Research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST).

ASJC Scopus subject areas

  • General Materials Science
  • Condensed Matter Physics


Dive into the research topics of 'LaBiTe3: An unusual thermoelectric material'. Together they form a unique fingerprint.

Cite this