Joint prediction of breast cancer histological grade and Ki-67 expression level based on DCE-MRI and DWI radiomics

Ming Fan, Wei Yuan, Weirui Zhao, Maosheng Xu, Shiwei Wang, Xin Gao, Lihua Li

Research output: Contribution to journalArticlepeer-review

73 Scopus citations

Abstract

Objective: Histologic grade and Ki-67 proliferation status are important clinical indictors for breast cancer prognosis and treatment. The purpose of this study is to improve prediction accuracy of these clinical indicators based on tumor radiomic analysis. Methods: We jointly predicted Ki-67 and tumor grade with a multitask learning framework by separately utilizing radiomics from tumor MRI series. Additionally, we showed how multitask learning models (MTLs) could be extended to combined radiomics from the MRI series for a better prediction based on the assumption that features from different sources of images share common patterns while providing complementary information. Tumor radiomic analysis was performed with morphological, statistical and textural features extracted on the DWI and dynamic contrast-enhanced MRI (DCE-MRI) series of the precontrast and subtraction images, respectively. Results: Joint prediction of Ki-67 status and tumor grade on MR images using the MTL achieved performance improvements over that of single-task-based predictive models. Similarly, for the prediction tasks of Ki-67 and tumor grade, the MTL for combined precontrast and apparent diffusion coefficient (ADC) images achieved AUCs of 0.811 and 0.816, which were significantly better than that of the single-task- based model with p values of 0.005 and 0.017, respectively. Conclusion: Mapping MRI radiomics to two related clinical indicators improves prediction performance for both Ki-67 expression level and tumor grade. Significance: Joint prediction of indicators by multitask learning that combines correlations of MRI radiomics is important for optimal tumor therapy and treatment because clinical decisions are made by integrating multiple clinical indicators.
Original languageEnglish (US)
Pages (from-to)1-1
Number of pages1
JournalIEEE Journal of Biomedical and Health Informatics
Volume24
Issue number6
DOIs
StatePublished - Nov 27 2019

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): URF/1/3450-01
Acknowledgements: This work has received funding by the National Natural Science Foundation of China (61731008, 61871428, and 61401131), the Natural Science Foundation of Zhejiang Province of China (LJ19H180001), and by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. URF/1/3450-01. M. Fan, W. Zhao and W. Yuan are with College of Life Information and Instrument Engineering, Hangzhou Dianzi University

Fingerprint

Dive into the research topics of 'Joint prediction of breast cancer histological grade and Ki-67 expression level based on DCE-MRI and DWI radiomics'. Together they form a unique fingerprint.

Cite this