Abstract
To accurately quantify landslide hazard in a region of Turkey, we develop new marked point-process models within a Bayesian hierarchical framework for the joint prediction of landslide counts and sizes. We leverage mark distributions justified by extreme-value theory, and specifically propose ‘sub-asymptotic’ distributions to flexibly model landslide sizes from low to high quantiles. The use of intrinsic conditional autoregressive priors, and a customised adaptive Markov chain Monte Carlo algorithm, allow for fast fully Bayesian inference. We show that sub-asymptotic mark distributions provide improved predictions of large landslide sizes, and use our model for risk assessment and hazard mapping.
Original language | English (US) |
---|---|
Journal | JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS |
DOIs | |
State | Published - Sep 13 2023 |
Bibliographical note
KAUST Repository Item: Exported on 2023-09-26Acknowledged KAUST grant number(s): OSR-CRG2020-4338
Acknowledgements: This publication is based on the work supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-CRG2020-4338. The authors are grateful to the reviewers and the editors for their helpful comments and suggestions that improved the quality of the manuscript.
ASJC Scopus subject areas
- Statistics and Probability
- Statistics, Probability and Uncertainty