Abstract
A state-observer based method is developed to solve point source localization problem for Poisson equation in a 3D rectangular prism with available boundary data. The technique requires a weighted sum of solutions of multiple boundary data estimation problems for Laplace equation over the 3D domain. The solution of each of these boundary estimation problems involves writing down the mathematical problem in state-space-like representation using one of the space variables as time-like. First, system observability result for 3D boundary estimation problem is recalled in an infinite dimensional setting. Then, based on the observability result, the boundary estimation problem is decomposed into a set of independent 2D sub-problems. These 2D problems are then solved using an iterative observer to obtain the solution. Theoretical results are provided. The method is implemented numerically using finite difference discretization schemes. Numerical illustrations along with simulation results are provided.
Original language | English (US) |
---|---|
Title of host publication | 2017 American Control Conference, ACC 2017 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 3257-3262 |
Number of pages | 6 |
ISBN (Electronic) | 9781509059928 |
DOIs | |
State | Published - Jun 29 2017 |
Event | 2017 American Control Conference, ACC 2017 - Seattle, United States Duration: May 24 2017 → May 26 2017 |
Publication series
Name | Proceedings of the American Control Conference |
---|---|
ISSN (Print) | 0743-1619 |
Conference
Conference | 2017 American Control Conference, ACC 2017 |
---|---|
Country/Territory | United States |
City | Seattle |
Period | 05/24/17 → 05/26/17 |
Bibliographical note
Publisher Copyright:© 2017 American Automatic Control Council (AACC).
ASJC Scopus subject areas
- Electrical and Electronic Engineering