TY - JOUR
T1 - Isolation of cells for selective treatment and analysis using a magnetic microfluidic chip
AU - Yassine, Omar
AU - Gooneratne, Chinthaka Pasan
AU - Abu Smara, D.
AU - Li, F.
AU - Alanazy, Mohammed H.
AU - Merzaban, Jasmeen
AU - Kosel, Jürgen
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2014/5
Y1 - 2014/5
N2 - This study describes the development and testing of a magnetic microfluidic chip (MMC) for trapping and isolating cells tagged with superparamagnetic beads (SPBs) in a microfluidic environment for selective treatment and analysis. The trapping and isolation are done in two separate steps; first, the trapping of the tagged cells in a main channel is achieved by soft ferromagnetic disks and second, the transportation of the cells into side chambers for isolation is executed by tapered conductive paths made of Gold (Au). Numerical simulations were performed to analyze the magnetic flux and force distributions of the disks and conducting paths, for trapping and transporting SPBs. The MMC was fabricated using standard microfabrication processes. Experiments were performed with E. coli (K12 strand) tagged with 2.8 μm SPBs. The results showed that E. coli can be separated from a sample solution by trapping them at the disk sites, and then isolated into chambers by transporting them along the tapered conducting paths. Once the E. coli was trapped inside the side chambers, two selective treatments were performed. In one chamber, a solution with minimal nutrition content was added and, in another chamber, a solution with essential nutrition was added. The results showed that the growth of bacteria cultured in the second chamber containing nutrient was significantly higher, demonstrating that the E. coli was not affected by the magnetically driven transportation and the feasibility of performing different treatments on selectively isolated cells on a single microfluidic platform.
AB - This study describes the development and testing of a magnetic microfluidic chip (MMC) for trapping and isolating cells tagged with superparamagnetic beads (SPBs) in a microfluidic environment for selective treatment and analysis. The trapping and isolation are done in two separate steps; first, the trapping of the tagged cells in a main channel is achieved by soft ferromagnetic disks and second, the transportation of the cells into side chambers for isolation is executed by tapered conductive paths made of Gold (Au). Numerical simulations were performed to analyze the magnetic flux and force distributions of the disks and conducting paths, for trapping and transporting SPBs. The MMC was fabricated using standard microfabrication processes. Experiments were performed with E. coli (K12 strand) tagged with 2.8 μm SPBs. The results showed that E. coli can be separated from a sample solution by trapping them at the disk sites, and then isolated into chambers by transporting them along the tapered conducting paths. Once the E. coli was trapped inside the side chambers, two selective treatments were performed. In one chamber, a solution with minimal nutrition content was added and, in another chamber, a solution with essential nutrition was added. The results showed that the growth of bacteria cultured in the second chamber containing nutrient was significantly higher, demonstrating that the E. coli was not affected by the magnetically driven transportation and the feasibility of performing different treatments on selectively isolated cells on a single microfluidic platform.
UR - http://hdl.handle.net/10754/550208
UR - http://scitation.aip.org/content/aip/journal/bmf/8/3/10.1063/1.4883855
UR - http://www.scopus.com/inward/record.url?scp=84929601001&partnerID=8YFLogxK
U2 - 10.1063/1.4883855
DO - 10.1063/1.4883855
M3 - Article
C2 - 25379074
SN - 1932-1058
VL - 8
SP - 034114
JO - Biomicrofluidics
JF - Biomicrofluidics
IS - 3
ER -