Abstract
The aim of this work is the development of a microfluidic immunosensor for the immobilization of cancer cells and their separation from healthy cells by using "in situ" microfluidic biofunctionalization protocols. These protocols allow to link antibodies on microfluidic device surfaces and can be used to study the interaction between cell membrane and biomolecules. Moreover they allow to perform analysis with high processing speed, small quantity of reagents and samples, short reaction times and low production costs. In this work the developed protocols were used in microfluidic devices for the isolation of cancer cells in heterogeneous blood samples by exploiting the binding of specific antibody to an adhesion protein (EpCAM), overexpressed on the tumor cell membranes. The presented biofunctionalization protocols can be performed right before running the experiment: this allows to have a flexible platform where biomolecules of interest can be linked on the device surface according to the user's needs. © 2014 Elsevier B.V. All rights reserved.
Original language | English (US) |
---|---|
Pages (from-to) | 76-80 |
Number of pages | 5 |
Journal | Microelectronic Engineering |
Volume | 124 |
DOIs | |
State | Published - Jul 2014 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: This work was partially supported by the project PON "Nuove strategie nanotecnologiche per la messa a punto di farmaci e presidi diagnostici diretti verso cellule cancerose circolanti" (code: PON01_02782), the European project EUROMBR (grant agreement n.608104), the project for Young Researchers financed from the Italian Ministry of Health (CUP J65C13001350001, project n. GR-2010-2311677) and the project FIRB "ReteNazionale di Ricerca sulle Nanoscienze ItalNanoNet" (code: RBPR05JH2P_010, CUP B41J09000110005) granted to the nanotechnology laboratory of the Department of Experimental Medicine of the University of Magna Graecia of Catanzaro.
ASJC Scopus subject areas
- Surfaces, Coatings and Films
- Atomic and Molecular Physics, and Optics
- Electronic, Optical and Magnetic Materials
- Electrical and Electronic Engineering
- Condensed Matter Physics