Inverse-Designed Metaphotonics for Hypersensitive Detection

Research output: Contribution to journalArticlepeer-review

Abstract

Controlling the flow of broadband electromagnetic energy at the nanoscale remains a critical challenge in optoelectronics. Surface plasmon polaritons (or plasmons) provide subwavelength localization of light but are affected by significant losses. On the contrary, dielectrics lack a sufficiently robust response in the visible to trap photons similar to metallic structures. Overcoming these limitations appears elusive. Here we demonstrate that addressing this problem is possible if we employ a novel approach based on suitably deformed reflective metaphotonic structures. The complex geometrical shape engineered in these reflectors emulates nondispersive index responses, which can be inverse-designed following arbitrary form factors. We discuss the realization of essential components such as resonators with an ultrahigh refractive index of n = 100 in diverse profiles. These structures support the localization of light in the form of bound states in the continuum (BIC), fully localized in air, in a platform in which all refractive index regions are physically accessible. We discuss our approach to sensing applications, designing a class of sensors where the analyte directly contacts areas of ultrahigh refractive index. Leveraging this feature, we report an optical sensor with sensitivity two times higher than the closest competitor with a similar micrometer footprint. Inversely designed reflective metaphotonics offers a flexible technology for controlling broadband light, supporting optoelectronics’ integration with large bandwidths in circuitry with miniaturized footprints.
Original languageEnglish (US)
JournalACS Nanoscience Au
DOIs
StatePublished - Jul 25 2022

Bibliographical note

KAUST Repository Item: Exported on 2022-09-14
Acknowledgements: The authors acknowledge the use of resources of the Supercomputing Laboratory at KAUST. Y.K. acknowledges a support from the Australian Research Council (Grant DP210101292), Russian Science Foundation (Grant 21-72-30018), and the U.S. Army International Office (Grant FA520921P0034).

Fingerprint

Dive into the research topics of 'Inverse-Designed Metaphotonics for Hypersensitive Detection'. Together they form a unique fingerprint.

Cite this