Abstract
We propose that topological spin currents flowing in topologically nontrivial magnetic textures, such as magnetic skyrmions and vortices, produce an intrinsic nonadiabatic torque of the form Tt∼[(∂xm×∂ym)·m]∂ym. We show that this torque, which is absent in one-dimensional domain walls and/or nontopological textures, is responsible for the enhanced nonadiabaticity parameter observed in magnetic vortices compared to one-dimensional textures. The impact of this torque on the motion of magnetic skyrmions is expected to be crucial, especially to determine their robustness against defects and pinning centers.
Original language | English (US) |
---|---|
Journal | Physical Review B |
Volume | 95 |
Issue number | 5 |
DOIs | |
State | Published - Feb 28 2017 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledged KAUST grant number(s): OSR-CRG URF/1/1693-01
Acknowledgements: C.A. and A.M. acknowledges financial support from the King Abdullah University of Science and Technology (KAUST) through the Award No. OSR-CRG URF/1/1693-01 from the Office of Sponsored Research (OSR). The authors thank M. Kläui, Kyung-Jin Lee, Gen Tatara, A. Bisig, and A. Abbout for inspiring discussions.