Abstract
State-of-the-art computation and visualization of vortices in unsteady fluid flow employ objective vortex criteria, which
makes them independent of reference frames or observers. However, objectivity by itself, although crucial, is not sufficient to guarantee
that one can identify physically-realizable observers that would perceive or detect the same vortices. Moreover, a significant challenge
is that a single reference frame is often not sufficient to accurately observe multiple vortices that follow different motions. This paper
presents a novel framework for the exploration and use of an interactively-chosen set of observers, of the resulting relative velocity
fields, and of objective vortex structures. We show that our approach facilitates the objective detection and visualization of vortices
relative to well-adapted reference frame motions, while at the same time guaranteeing that these observers are in fact physically
realizable. In order to represent and manipulate observers efficiently, we make use of the low-dimensional vector space structure of
the Lie algebra of physically-realizable observer motions. We illustrate that our framework facilitates the efficient choice and guided
exploration of objective vortices in unsteady 2D flow, on planar as well as on spherical domains, using well-adapted reference frames.
Original language | English (US) |
---|---|
Pages (from-to) | 1-1 |
Number of pages | 1 |
Journal | IEEE Transactions on Visualization and Computer Graphics |
DOIs | |
State | Published - 2021 |
Bibliographical note
KAUST Repository Item: Exported on 2021-10-04Acknowledgements: We thank Anna Fruhstuck for help with the figures and the video. This work was supported by King Abdullah University of Science and Technology (KAUST). This research used resources of the Core Labs of King Abdullah University of Science and Technology.