Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane

Jongsup Hong, Patrick Kirchen, Ahmed F. Ghoniem

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

The interactions between oxygen permeation and homogeneous fuel oxidation reactions on the sweep side of an ion transport membrane (ITM) are examined using a comprehensive model, which couples the dependency of the oxygen permeation rate on the membrane surface conditions and detailed chemistry and transport in the vicinity of the membrane. We assume that the membrane surface is not catalytic to hydrocarbon or syngas oxidation. Results show that increasing the sweep gas inlet temperature and fuel concentration enhances oxygen permeation substantially. This is accomplished through promoting oxidation reactions (oxygen consumption) and the transport of the products and reaction heat towards the membrane, which lowers the oxygen concentration and increases the gas temperature near the membrane. Faster reactions at higher fuel concentration and higher inlet gas temperature support substantial fuel conversion and lead to a higher oxygen permeation flux without the contribution of surface catalytic activity. Beyond a certain maximum in the fuel concentration, extensive heat loss to the membrane (and feed side) reduces the oxidation kinetic rates and limits oxygen permeation as the reaction front reaches the membrane. The sweep gas flow rate and channel height have moderate impacts on oxygen permeation and fuel conversion due to the residence time requirements for the chemical reactions and the location of the reaction zone relative to the membrane surface. © 2012 Elsevier B.V.
Original languageEnglish (US)
Pages (from-to)309-322
Number of pages14
JournalJournal of Membrane Science
Volume428
DOIs
StatePublished - Feb 2013
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KSU-I1-010-01
Acknowledgements: The authors would like to thank the King Fahd University of Petroleum and Minerals (KFUPM) in Dhahran, Saudi Arabia, for funding the research reported in this paper through the Center of Clean Water and Clean Energy at Massachusetts Institute of Technology and KFUPM. This work is also supported by King Abdullah University of Science and Technology grant number KSU-I1-010-01.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.

Fingerprint

Dive into the research topics of 'Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane'. Together they form a unique fingerprint.

Cite this