Integrated transcriptomic and proteomic analysis of pathogenic mycobacteria and their esx-1 mutants reveal secretion-dependent regulation of ESX-1 substrates and WhiB6 as a transcriptional regulator

Abdallah M. Abdallah*, Eveline M. Weerdenburg, Qingtian Guan, Roy Ummels, Stephanie Borggreve, Sabir A. Adroub, Tareq B. Malas, Raeece Naeem, Huoming Zhang, Thomas D. Otto, Wilbert Bitter, Arnab Pain

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

The mycobacterial type VII secretion system ESX-1 is responsible for the secretion of a number of proteins that play important roles during host infection. The regulation of the expression of secreted proteins is often essential to establish successful infection. Using transcriptome sequencing, we found that the abrogation of ESX-1 function in Mycobacterium marinum leads to a pronounced increase in gene expression levels of the espA operon during the infection of macrophages. In addition, the disruption of ESX-1-mediated protein secretion also leads to a specific down-regulation of the ESX-1 substrates, but not of the structural components of this system, during growth in culture medium. This effect is observed in both M. marinum and M. tuberculosis. We established that down-regulation of ESX-1 substrates is the result of a regulatory process that is influenced by the putative transcriptional regulator whib6, which is located adjacent to the esx-1 locus. In addition, the overexpression of the ESX-1-associated PE35/PPE68 protein pair resulted in a significantly increased secretion of the ESX-1 substrate EsxA, demonstrating a functional link between these proteins. Taken together, these data show that WhiB6 is required for the secretion-dependent regulation of ESX-1 substrates and that ESX-1 substrates are regulated independently from the structural components, both during infection and as a result of active secretion.

Original languageEnglish (US)
Article numbere0211003
JournalPloS one
Volume14
Issue number1
DOIs
StatePublished - Jan 2019

Bibliographical note

Funding Information:
Work in AP’s laboratory is supported by the KAUST faculty baseline fund (BAS/1/1020-01-01). We thank Astrid van der Sar and Esther Stoop for providing the M. marinum E11 ESX-1 mutants. The authors thank members of the Bioscience Core Lab (BCL) at KAUST for sequencing the RNA-seq libraries on the Illumina Hiseq platform and for running protein samples through the quantitative proteomics workflow with the LTQ-Orbitrap Velos instrument (Thermo Scientific).

Publisher Copyright:
© 2019 Abdallah et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Integrated transcriptomic and proteomic analysis of pathogenic mycobacteria and their esx-1 mutants reveal secretion-dependent regulation of ESX-1 substrates and WhiB6 as a transcriptional regulator'. Together they form a unique fingerprint.

Cite this