Abstract
Herein, we report a strategy to construct highly efficient perfluorooctanoic acid (PFOA) adsorbents by installing synergistic electrostatic/hydrophobic sites onto porous organic polymers (POPs). The constructed model material of PAF-1-NDMB (NDMB = N,N-dimethyl-butylamine) demonstrates an exceptionally high PFOA uptake capacity over 2000 mg g−1, which is 14.8 times enhancement compared with its parent material of PAF-1. And it is 32.0 and 24.1 times higher than benchmark materials of DFB-CDP (β-cyclodextrin (β-CD)-based polymer network) and activated carbon under the same conditions. Furthermore, PAF-1-NDMB exhibits the highest k2 value of 24,000 g mg−1 h−1 among all reported PFOA sorbents. And it can remove 99.99% PFOA from 1000 ppb to
Original language | English (US) |
---|---|
Journal | Nature communications |
Volume | 13 |
Issue number | 1 |
DOIs | |
State | Published - Apr 19 2022 |
Bibliographical note
KAUST Repository Item: Exported on 2022-04-26Acknowledgements: The authors acknowledge National Science Foundation of China (NO. 21978138 and 22035003) and the Fundamental Research Funds for the Central Universities (Nankai University) for financial support of this work. Financial support was also provided by the Haihe Laboratory of Sustainable Chemical Transformations. Partial support from the U.S. National Science Foundation (CBET-1706025) and the Robert A. Welch Foundation (B-0027) (SM) as well as from Researchers Supporting Program project no (RSP-2022/79) at King Saud University, Riyadh, Saudi Arabia (AN) is also acknowledged
ASJC Scopus subject areas
- General Biochemistry, Genetics and Molecular Biology
- General Chemistry
- General Physics and Astronomy