TY - JOUR
T1 - Influence of squeeze film damping on the higher-order modes of clamped–clamped microbeams
AU - Alcheikh, Nouha
AU - Kosuru, Lakshmoji
AU - Jaber, Nizar
AU - Bellaredj, Mohammed Lamine Faycal
AU - Younis, Mohammad I.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This research has been supported by KAUST.
PY - 2016/5/6
Y1 - 2016/5/6
N2 - This paper presents an experimental study and a finite-element analysis of the effect of squeeze film damping on the resonance frequency and quality factor of the higher-order flexure vibrations modes of clamped-clamped microbeams. Viscoelastic and silicon nitride microbeams are fabricated and are electrostatically actuated by various electrode configurations to trigger the first, second, and third modes. The damping characteristic and the resonance frequency of these modes are examined for a wide range of gas pressure and electrostatic voltage loads. The results of the silicon nitride beams and viscoelastic beams are compared. It is found that the intrinsic material loss is the major dissipation mechanism at low pressure for the viscoelastic microbeams, significantly limiting their quality factor. It is also found that while the silicon nitride beams show higher quality factors at the intrinsic and molecular regimes of pressure, due to their low intrinsic loss, their quality factors near atmospheric pressure are lower than those of the viscoelastic microbeams. Further, the higher-order modes of all the beams show much higher quality factors at atmospheric pressure compared to the first mode, which could be promising for operating such resonators in air. Experimental results and finite element model simulations show good agreement for resonance frequency and quality factor for the three studied modes. © 2016 IOP Publishing Ltd.
AB - This paper presents an experimental study and a finite-element analysis of the effect of squeeze film damping on the resonance frequency and quality factor of the higher-order flexure vibrations modes of clamped-clamped microbeams. Viscoelastic and silicon nitride microbeams are fabricated and are electrostatically actuated by various electrode configurations to trigger the first, second, and third modes. The damping characteristic and the resonance frequency of these modes are examined for a wide range of gas pressure and electrostatic voltage loads. The results of the silicon nitride beams and viscoelastic beams are compared. It is found that the intrinsic material loss is the major dissipation mechanism at low pressure for the viscoelastic microbeams, significantly limiting their quality factor. It is also found that while the silicon nitride beams show higher quality factors at the intrinsic and molecular regimes of pressure, due to their low intrinsic loss, their quality factors near atmospheric pressure are lower than those of the viscoelastic microbeams. Further, the higher-order modes of all the beams show much higher quality factors at atmospheric pressure compared to the first mode, which could be promising for operating such resonators in air. Experimental results and finite element model simulations show good agreement for resonance frequency and quality factor for the three studied modes. © 2016 IOP Publishing Ltd.
UR - http://hdl.handle.net/10754/621557
UR - https://iopscience.iop.org/article/10.1088/0960-1317/26/6/065014
UR - http://www.scopus.com/inward/record.url?scp=84969888686&partnerID=8YFLogxK
U2 - 10.1088/0960-1317/26/6/065014
DO - 10.1088/0960-1317/26/6/065014
M3 - Article
SN - 0960-1317
VL - 26
SP - 065014
JO - Journal of Micromechanics and Microengineering
JF - Journal of Micromechanics and Microengineering
IS - 6
ER -