Influence of protein charge patches on the structure of protein-polyelectrolyte complexes

Rituparna Samanta, Venkat Ganesan

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

We employ a combination of the single chain in mean field simulation approach with the solution of Poisson's equation to study the influence of charge heterogeneities on the structure of protein–polyelectrolyte complexes. By adopting a coarse-grained model of representing proteins as charged nanoparticles, we studied the influence of the pattern of charge heterogeneities, net charge, ratio of positive to negative charges on the patches, and the volume fraction of the particles on the structural and aggregation characteristics of proteins in polyelectrolyte solutions. Our results demonstrate that the pattern of charge heterogeneities can exert a significant influence on the resulting characteristics of the aggregates, in some cases leading to a transformation from polymer-bridged complexes into direct particle aggregates driven by the attraction between oppositely charged patches.
Original languageEnglish (US)
Pages (from-to)9475-9488
Number of pages14
JournalSoft Matter
Volume14
Issue number46
DOIs
StatePublished - Nov 15 2018
Externally publishedYes

ASJC Scopus subject areas

  • Chemistry(all)
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Influence of protein charge patches on the structure of protein-polyelectrolyte complexes'. Together they form a unique fingerprint.

Cite this